

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

Easy and fast installation

Hydraulic module available

Compact, reliable and efficient

Nominal cooling capacity: 27-39 kW Nominal heating capacity: 29-39 kW

heating

USE

The EREBA™ ACCESS air-to-water heat pump / chiller range is designed for heating and cooling applications in individual homes and small commercial applications.

When installed alone, **EREBA™ ACCESS** is compatible with low to medium temperature emitters (underfloor heating, fan coil units, water cassettes, radiators, mixed installations, etc.). **EREBA™ ACCESS** is also compatible with medium to high temperature emitters for boiler backup operation.

The **EREBA™ ACCESS** unit is installed outside in an open area, ideally as close as possible to the machine room.

Each unit is tested in the factory and delivered ready for operation:

- End-of-line test of all unit operating parameters.
- Circuit leakage, electrical compliance, water and refrigerant pressures.

RANGE

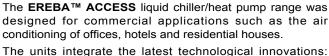
The EREBA™ ACCESS range offers 3 models in cooling only and reversible version.

Operating range:

- Cooling mode with an outdoor temperature from -10°C to 46°C (or 48°C for 17-40 models)
- Heating from -15°C to +40°C.

In heating mode, by low external temperature, the heat pump can manage, a backup type boiler or electrical heater if necessary.

COMPLIANCE


Low Voltage Directive 2014/35/EU

EMC: Electromagnetic Compatibility 2014/30/EU PED: Pressure Equipment Directive 2014/6/EU

WEEE: Waste Electrical & Electronic Equipment 2012/19/EU RoHS: Restriction of Hazardous Substances Directive 2011/65/EU

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

The units integrate the latest technological innovations: non-ozone depleting refrigerant R-410A, scroll or rotary compressors, low-noise fans and auto-adaptative microprocessor control.

For more flexibility the **EREBA™ ACCESS** units are available with hydraulic module integrated into the unit chassis, limiting the installation to straightforward operations like connection of the power supply, the water supply and return piping.

Features

The EREBA™ ACCESS chiller/heat pump systems can be used with a wide choice of CIAT terminal fan coil units and ductable products.

Quiet operation

Compressors

- Low-noise rotary/scroll compressor with low vibration levels and maintenance free.

Air heat exchanger section

- Vertical air heat exchanger coils
- The latest-generation low-noise fans are now even quieter and do not generate intrusive low-frequency noise.
- Rigid fan installation for reduced start-up noise.

Easy and fast installation

Integrated hydraulic module

- Fixed-speed pump.
- Water filter protecting the water pump against circulating
- High-capacity membrane expansion tank ensures pressurisation of the water circuit .
- Overpressure valve, set to 4 bar.
- Thermal insulation and frost protection down to -10°C using pump cycling and electric resistance heater for sizes.

Physical features

- Advanced circuit design and component selection has resulted in a compact unit with an exceptionally small footprint that is easy to transport even through narrow doors.
- Reduced operating weight and a handle on the unit panels to facilitate transport.
- The unit is enclosed by easily removable panels, covering all components (except air heat exchanger and fans).
- A neutral colour (RAL 7035) to facilitate the integration in residential area.

Simplified electrical connections

- Single power supply point.
- Main disconnect switch with high trip capacity.
- Transformer for safe 24 V control circuit supply included.

Economical operation

Increased seasonal efficiency

- In accordance with EN 14825:2018, Average Climate, energy label reach A and B (see physical data).
- Specific Free Defrost algorithm is present to optimise performance and comfort even during defrost period.

Reduced maintenance costs

- Maintenance-free scroll or rotary compressors.
- Fast diagnosis of possible incidents and their history via the Pro-Dialog+ control.
- R-410A refrigerant is easier to use than other refrigerant blends

Environmental responsibility

Non-ozone depleting refrigerant R-410A

- Chlorine-free refrigerant of the HFC group with zero ozone depletion potential.
- Very efficient gives an increased energy efficiency ratio (EER/SEER/COP/SCOP).

Leak-tight refrigerant circuit

- Brazed refrigerant connections for increased leak-tightness.
- Verification of pressure transducers and temperature sensors without transferring refrigerant charge.

Superior reliability

Auto-adaptive control

 Control algorithm prevents excessive compressor cycling and permits reduction of the water quantity in the hydraulic circuit.

Exceptional endurance tests

- Corrosion resistance tests in salt mist in the laboratory.
- Accelerated ageing test on components that are submitted to continuous operation: compressor piping, fan supports.
- Transport simulation test in the laboratory on a vibrating table.

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

Pro-Dialog+

Pro-Dialog+ control

Pro-Dialog+ combines intelligence with operating simplicity. The control constantly monitors all machine parameters and precisely manages the operation of compressors, expansion devices, fans and of the water heat exchanger water pump for optimum energy efficiency.

Pro-Dialog+ interface

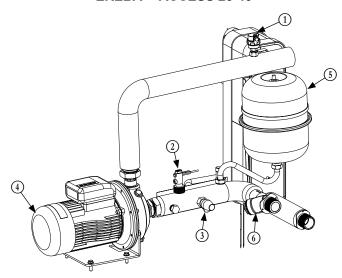
Energy management

- Seven-day internal time schedule clock: Permits unit on/off control and operation at a second set point
- Set point reset based on the outside air temperature or the return water temperature or on the water heat exchanger delta T
- Master/slave control of two units operating in parallel with operating time equalisation and automatic change-over in case of a unit fault.
- Change-over based on the outside air temperature
- Integrated features
- Night mode: Capacity and fan speed limitation for reduced noise level
- Ease-of-use
- The new backlit LCD interface includes a manual control potentiometer to ensure legibility under any lighting conditions.
- The information is displayed clearly in English, French, German, Italian and Spanish (for other languages please consult CIAT)
- The Pro-Dialog+ navigation uses intuitive tree-structure menus, similar to the Internet navigators. They are userfriendly and permit quick access to the principal operating parameters: number of compressors operating, suction/ discharge pressure, compressor operating hours, set point, air temperature, entering/leaving water temperature.

Remote operating mode with volt-free contacts

A simple two-wire communication bus between the RS485 port of the unit offers multiple remote control, monitoring and diagnostic possibilities.

- Start/stop: Opening of this contact will shut down the unit
- Dual set point: Closing of this contact activates a second set point (example: Unoccupied mode)
- Alert indication: This volt-free contact indicates the presence of a minor fault
- Alarm indication: This volt-free contact indicates the presence of a major fault that has led to the shut-down of the unit
- User safety: This contact can be used for any customer safety loop, closing of the contact generates a specific alarm
- Out of service: This signal indicates that the unit is completely out of service
- Unit capacity: This analogue output (0-10 V) gives an immediate indication of the unit capacity
- Compressor operation: This contact signals that the compressor is in operation


Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

HYDRAULIC MODULE

The hydraulic module reduces the installation time. The unit is factory-equipped with the main hydraulic components required for the installation.

The water heat exchanger and the hydraulic module are protected against frost down to -10°C, using an electric resistance heater and pump cycling. However, the use of EG (Ethylen Glycol) can effectively protect the installation even in case of power failure

EREBA™ ACCESS 26-40

Key

Automatic purge valve

2) Flow switch

3 Relief valve

Circulation pump

(5) Expansion tank

Mesh filter

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

Performances data

EREBA™ ACCESS Cooling o	only			26T	33T	40T
Cooling						
Standard unit	– CA1	Nominal capacity	kW	27,1	33,0	41,0
Full load performances*	- CAT	EER	kW/kW	3,01	3,22	2,91
	CA2	Nominal capacity	kW	38,4	45,5	56,5
	CAZ	EER	kW/kW	3,91	4,00	3,44
Standard unit		SEPR _{-2/-8°c} Process medium temp.	kWh/kWh	3,17	3,02	3,07
Seasonal energy efficiency**		SEPR ^{12/7°c} Process high temp.	kWh/kWh	4,97	5,04	4,91
		SEER _{12/7°c} Comfort low temp.	kWh/kWh	3,15	3,36	3,22
		SEER _{23/18°c} Comfort medium temp.	kWh/kWh	3,76	3,83	3,67
EREBA™ ACCESS Heat pun Heating	тр			26HT	33HT	40HT
Standard unit		Nominal capacity	kW	30,9	34,4	38,9
Full load performances*	– HA1	СОР	kW/kW	3,96	3,96	3,51
		Nominal capacity	kW	29,9	33,3	41,0
	HA2	COP	kW/kW	3,20	3,19	3,16
Standard unit		SCOP _{30/35°c}		3,19	3,20	3,19
Seasonal energy efficiency**		ηs heat _{30/35°c}	%	125	125	125
	ПАТ	P _{rated}	kW	21	24	31
		Energy labelling		A+	A+	A+
Cooling						
Standard unit	– CA1	Nominal capacity	kW	26,0	32,0	38,9
Full load performances*	- CAT	EER	kW/kW	2,87	3,09	2,81
	CA2	Nominal capacity	kW	33,7	42,7	53,8
	UA2	EER	kW/kW	3,50	3,80	3,36
Standard unit		SEPR _{12/7°c} Process high temp.	kWh/kWh	4,78	4,97	3,86
Seasonal energy efficiency**		SEER _{12/7°c} Comfort low temp.	kWh/kWh	3,06	3,30	3,19
		SEER _{23/18°c} Comfort medium temp.	kWh/kWh	3,57	3,73	3,64

In accordance with standard EN14511-3:2018.

In accordance with standard EN14825:2018, average climate

CA1 $Cooling\ mode\ conditions: Evaporator\ water\ entering/leaving\ temperature\ 12^{\circ}C/7^{\circ}C,\ outside\ air\ temperature\ 35^{\circ}C,\ evaporator\ fooling\ mode\ conditions:$

factor 0 m2.K/W

CA2 Cooling mode conditions: Evaporator water entering/leaving temperature 23°C/18°C, outside air temperature 35°C, evaporator fooling

factor 0 m2.K/W

HA1 Heating mode conditions: Water heat exchanger water entering/leaving temperature 30°C/35°C, outside air temperature tdb/twb = 7°C

db/6°C wb, evaporator fooling factor 0 m².K/W

HA2 Heating mode conditions: Water heat exchanger water entering/leaving temperature 40°C/45°C, outside air temperature tdb/twb= 7°C

db/6°C wb, evaporator fooling factor 0 m².K/W Bold values compliant to Ecodesign regulation: (EU) No 2015/1095 for Process application

SEPR_{-2/-8°C} Values calculated in accordance with EN14825:2018 SEER_{12/7°C} & SEPR_{12/7°C}

SEER_{23/18°C} Values calculated in accordance with EN14825:2018

Πs heat_{30/35°c} & SCOP_{30/35°C} Bold values compliant to Ecodesign regulation: (EU) No 813/2013 for Heat Pump application

Eurovent certified values

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

PHYSICAL DATA

EDEDA IM ACCECC				Cooling only	y	Reversible		
EREBA™ ACCESS			26T	33T	40T	26HT	33HT	40HT
Sound power level(1)		dB(A)	78	78	80	78	78	80
Sound pressure level at 10 m ⁽²⁾		dB(A)	46	46	48	46	46	48
Length		mm		1002			1002	
Width		mm		824			824	
Height		mm		1790			1790	
Operating weight ⁽³⁾		kg	255	280	291	280	295	305
Compressors			Scroll					
Refrigerant R-410A charge ⁽³⁾		kg	5,8	8,6	8,8	7,6	9,5	9,8
		CO ₂ eq	12,1	18	18,4	15,9	19,9	20,5
Air heat exchanger			Grooved copper tubes, aluminium fins					
Axial Fans				1 twin-speed	i		1 twin-speed	l
Diameter		mm		710			710	
Air flow		l/s		3530			3530	
Water Heat Exchanger			Brazed plate					
Water volume		L	2,28	2,85	3,8	2,28	2,85	3,8
Expansion tank volume		L		8			8	
Pump					Fixed	speed		
Available static pressure	C1/H1	kPa	174	160	188	188	176	187
Available static pressure	C2/H2	kPa	78	56	106	197	186	193
Minimum system water content		1	96	117	145	94	115	140
Max. water-side operating pressure kPa			400					
Outlet diameter			1"1/4 G male					
Chassis paint colour					RAL	7035		

⁽¹⁾ In dB ref=10-12 W, (A) weighting. Declared dual-number noise emission values in accordance with ISO 4871 (with an associated uncertainty of +/-3 dB(A)). Measured in accordance with ISO 9614-1 and certified by Eurovent.

⁽²⁾ In dB ref 20 µPa, (A) weighting. Declared dual-number noise emission values in accordance with ISO 4871 (with an associated uncertainty of +/-3 dB(A)). For information, calculated from the sound power level Lw(A).

⁽³⁾ Values are guidelines only. Refer to the unit nameplate.

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

ELECTRICAL DATA

EREBA™ ACCESS		26	33	40
Nominal power supply	V-ph-Hz	400-3	+N-50	400-3-50
Voltage range	V	340	-460	360-440
Control circuit supply		24 V	via internal trans	sformer
Maximum start-up current (Un)(1)	А	118	118	176
Unit power factor at nominal capacity ⁽²⁾		0,77	0,81	0,9
Maximum operating power input ⁽²⁾	kW	11	13,8	17,5
Nominal unit operating current drawn ⁽³⁾	А	16	17	25
Maximum operating current draw (Un) ⁽⁴⁾	А	20	24	30
Maximum operating current draw (Un-15%) ⁽⁵⁾	А	23	27	36
Power fuse current (gL fuse)	А	40	50	63
Power supply cable section		H07RN-F - 5x16mm ² H07RN - 4x16n		
Pump - power input ⁽⁶⁾	kW	0,99	1,1	1,2
Pump - nominal operating current draw ⁽⁶⁾	А	2,4	2,6	2,8
Pump - maximum current (external pump)	А	2,5		2,4
Number of fan motor capacitors (5 μF/450 V)		0	0	0
Remote controller - Power supply cable section		Н	03VV-F - 7x0,5n	nm²

⁽¹⁾ Maximum instantaneous start-up current (locked rotor current of the compressor).

⁽²⁾ Power input, compressors and fans, at the unit operating limits (saturated suction temperature 10°C, saturated condensing temperature 65°C) and nominal voltage of 400V (data given on the unit nameplate)

⁽³⁾ Standardised Eurovent conditions: water heat exchanger entering/leaving water temperature 12 °C/7 °C, outside air temperature 35 °C.

(4) Maximum unit operating current at maximum unit power input and 400 V (data given on the unit nameplate).

(5) Maximum unit operating current at maximum unit power input and 340-460 V for sizes 026 to 033 or 360-440 V for size 040.

⁽⁶⁾ Gross performances.

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

PART-LOAD PERFORMANCES

SEER for comfort chillers (in accordance with EU ECODESIGN)

The SEER (Seasonal Energy Efficiency Ratio) measures the seasonal energy efficiency of comfort **chillers** by calculating the ratio between annual cooling demand of the building and annual energy demand of the chiller. It takes into account the energy efficiency achieved for each outdoor temperature weighted by the number of hours observed for each of these temperatures, using actual climate data.

SEER is a new way of measuring the true energy efficiency of chillers for **comfort cooling** over an entire year. This new indicator gives a more realistic indication of the real energy efficiency and environmental impact of a cooling system. (Ecodesign Regulation 2016/2281).

SCOP (In accordance with standard N14825:2018, average climate)

The **SCOP** (Seasonal Coefficient of Performance) permit evaluation of the average energy efficienty at part load, based on multipoint conditions (16°C to -10°C for average climate) and number of hours occurring at each air temperature (Bin hours).

To be able to compare the energy efficiency of boilers using a primary energy source (gas or fuel) with heat pumps using a final energy source (electricity), the seasonal efficiency criteria used by the Ecodesign regulations is known as it is based on the use of primary energy sources and expressed in %.

SEPR for process chillers (in accordance with EU ECODESIGN)

The SEPR (Seasonal Energy Performance Ratio) measures the seasonal energy efficiency of process chillers by calculating the ratio between annual cooling demand of the process and annual energy demand of the chiller. It takes into account the energy efficiency achieved at each outdoor temperature of an average climate weighted by the number of hours observed for each of these temperatures.

SEPR is a new way of measuring the true energy efficiency of chillers for **process cooling** over an entire year. This new indicator gives a more realistic indication of the real energy efficiency and environmental impact of the cooling system (Ecodesign Regulation 2015/1095).

Low temp (30/35)

Average climate

EREBA™ ACCESS	ŋs (%)	SCOP	Pdesign (kW)	Annual power input with backup heater (kWh)	Sound power level dB(A)	Energy Class
26 HT	125	3,19	21	13664	78	A+
33 HT	125	3,19	23	15145	78	A+
40 HT	125	3,19	31	20999	80	A+

Colder climate

EREBA™ ACCESS	ŋs (%)	SCOP	Pdesign (kW)	Annual power input with backup heater (kWh)	Sound power level dB(A)
26 HT	122	3,13	30	21219	-
33 HT	123	3,14	34	23735	-
40 HT	120	3,07	42	30292	-

Warmer climate

EREBA™ ACCESS	ŋs (%)	SCOP	Pdesign (kW)	Annual power input with backup heater (kWh)	Sound power level dB(A)
26 HT	137	3,50	21	7637	-
33 HT	138	3,52	23	8492	-
40 HT	133	3,41	28	10623	-

Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

SOUND SPECTRUM

Sound power level (dB(A)

Sound power level (Lw)-Cooling mode

EREBA™ ACCESS	Overall Sound Power						
125	250	500	1000	2000	4000	level ⁽²⁾	
26	79	76	76	74	67	60	78
33	79	76	76	74	67	60	78
40	82	79	77	76	71	65	80

OPERATING LIMITS

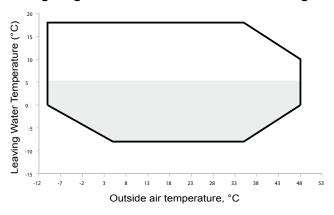
Water flow rate (in I/s)

Data applicable for pure water.

EREBA™ ACCESS	Minimum	Maximum	@ 50kPa ⁽¹⁾	Maximum @ C1 ⁽²⁾
EREBA ···· ACCESS	Willimum	Cooling mode	Heating mode	Cooling mode 12°C/7°C, 35°C
26	0,67	1,96	2,18	1,32
33	0,87	2,18	2,29	1,60
40	1,05	2,6	2,6	1,99

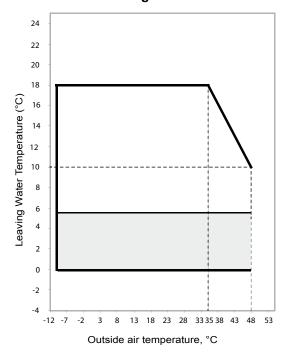
 ⁽¹⁾ In dB ref=10-12 W, as a guideline. Measured in accordance with ISO 9614-1.
 (2) In dB ref=10-12 W, weighting (A), with uncertainty +/-3 dB. Measured in accordance with ISO 9614-1 and certified by Eurovent.

⁽¹⁾ Maximum flow rate at an available pressure of 50 kPa (unit with hydraulic module)
(2) Maximum flow rate at condition 1 - evaporator water entering/leaving temperature 12°C/7°C, outside air temperature 35°C.

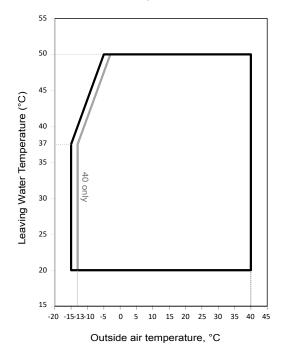


Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

OPERATING LIMITS


Operating range for EREBA™ ACCESS 26-40

Operating range EREBA™ ACCESS 26-40T cooling mode

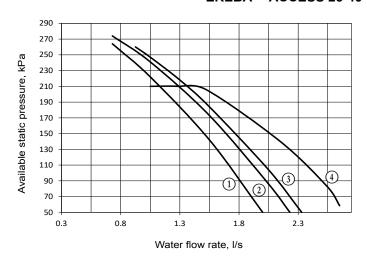

Operating range with anti-freeze solution

Operating range EREBA™ ACCESS 26-40 HT cooling mode

Operating range with anti-freeze solution

Operating range EREBA™ ACCESS 26-40 HT heating mode

Operating range with anti-freeze solution


Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

AVAILABLE STATIC SYSTEM PRESSURE

■ Available external static pressure for EREBA[™] ACCESS

Data applicable for pure water.

EREBA™ ACCESS 26-40

(1) 26T (2) 26HT - 33T (3) 33HT (4) 40T - 40HT

SYSTEM MINIMUM WATER VOLUME

The minimum water loop volume, in litres, is given by the following formula:

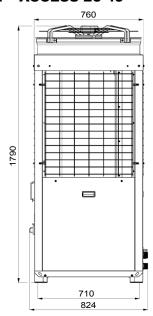
Volume (I) = CAP (kW) \times N

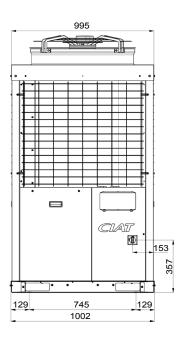
Where CAP is the nominal cooling capacity at nominal operating conditions.

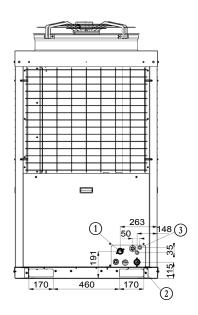
Application	N
Air conditioning	3,5
Heating or domestic hot water application	6
Industrial process cooling	See note

Note: For industrial process cooling applications, where high stability of water temperature levels must be achieved, the values above must be increased. We recommend consulting the factory for these particular applications.

SYSTEM MAXIMUM WATER VOLUME


Water maximum volume (L)			
Static pressure (bar)	1,5	3	
Fresh water	200	50	
Ethylen glycol 10%	150	28	
Ethylen glycol 20%	110	28	
Ethylen glycol 30%	90	23	




Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

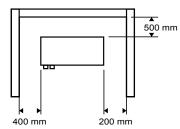
DIMENSIONS (IN MM)

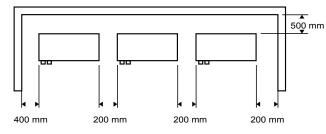
■ EREBA™ ACCESS 26-40

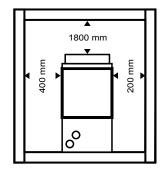
All dimensions are given in mm

(1) Water inlet

- Water outlet
 Power connections

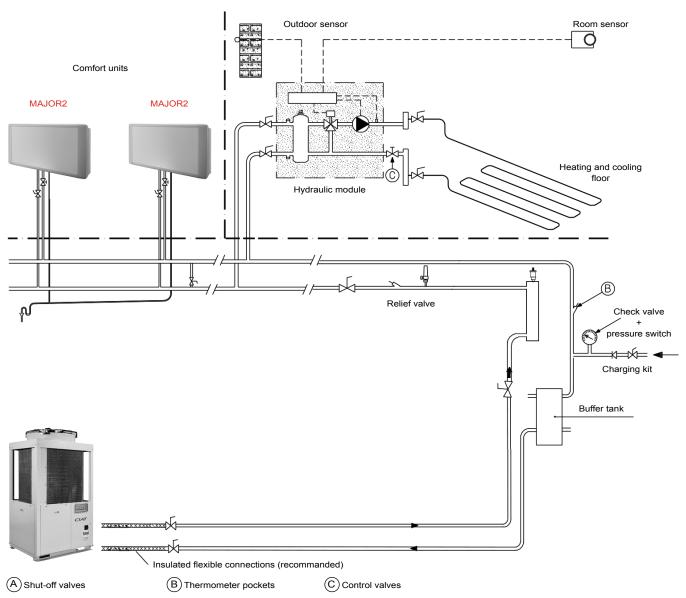

Mounting holes (ø10 mm)


Weight (in kg)					
EREBA™ ACCESS	Operating weight ⁽¹⁾				
EREBA ···· ACCESS	Cooling only (T)	Reversible (HT)			
26	255	280			
33	280	295			
40	291	305			


⁽¹⁾ Values are guidelines only. Refer to the unit nameplate

CLEARANCES (IN MM)

■ EREBA™ ACCESS 26-40



Air-Cooled Liquid Chillers and Reversible Air-to-Water Heat Pumps

SCHEMATIC INSTALLATION DIAGRAM

Note: the schematic diagrams herein are provided for information only. Under no circumstances do they constitute actual installation diagrams

